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Abstract Geometry optimization results are reported for
secondary structural elements of small proteins and poly-
peptides. Emphasis is placed on how well molecular me-
chanics as well as semiempirical, ab initio, and density
functional methods describe α-helical and related structures
in purely theoretical models (Gly10, Ile10) as well as in
realistic models (an α-helical region of calmodulin, and
the complete structure of a small protein). Many of the
methods examined here were found to provide unsatisfacto-
ry descriptions of the hydrogen-bonding interactions within
polypeptide-type structures, as the α-helical canonical sec-
ondary structure motif was not reproduced accurately. Ab
initio and DFT methods provided reasonable results only
when solvation models were included, although Hartree–
Fock failed even with solvation in one of the test cases;
among the semiempirical methods, one of the PM6 imple-
mentations performed very well.

Keywords Peptide .Protein .Alphahelix .Hydrogenbond .

DFT . PM6

Introduction

Computational examinations of enzyme mechanisms utiliz-
ing methods such as density functional theory (DFT) or
Hartree–Fock (HF) have traditionally been restricted—

especially in metalloproteins containing transition metal
ions—to smaller-size models of the active sites, due to the
substantial computing resources required [1–5]. On the oth-
er hand, the reliability of empirical methods for describing
protein structures has long been established [4, 6–9]. In
recent years, the use of accurate solvation models and
QM/MM-type techniques has allowed the influence of the
protein environment to be accounted for more explicitly,
although the less-relevant parts of the polypeptide are trea-
ted at levels of theory that are inferior to those applied to the
active site itself [1–5]. Additionally, there have been con-
stant efforts to improve the performance of lower levels of
theory (semiempirical, molecular mechanics), so that they
can be applied not just to the distant polypeptide regions but
also to the actual active site [10–13]. At the current rate of
evolution in computer performance, it may well be possible in
the near future to apply DFT or (post-)HF methods to whole-
protein enzyme models. Indeed, single-point energies have
already occasionally been computed for large—and even
complete—protein models at higher levels of theory, such as
DFT [13–25]. It is in this context that the study described in
this paper sought to gauge how well some of the commonly
used computational models predicted the geometries of poly-
peptide chains. This was considered to be a particularly chal-
lenging situation for several of these models. First,
polypeptide architectures tend to rely primarily on weak, non-
covalent interactions (mainly hydrogen bonding, although
recent results have suggested significantly more important
contributions from other factors, such as van der Waals dis-
persion interactions [26–28]). Second, methods requiring pa-
rametrization may not necessarily perform efficiently if they
have not been parameterized, especially when they are applied
to proteins. The present study sought to examine the degree to
which α-helical geometries can be described by computation-
al methods; it did not aim to predict the relative stability of this
type of secondary structure compared to others.
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Methods

The present study employed the following α-helical models:
Gly10, Gly50, Ile10, and Ile50. Additionally, two experimen-
tally known structures that were extracted from the Protein
Data Bank (3CLN and 1ALG) were also examined compu-
tationally. These models were built within the Builder mod-
ule of the Spartan software package [29], and were either
capped at the N- and C-termini with hydrogen atoms (i.e.,
C-terminal COOH, N-terminal –NH2) or left in ionized
forms (carboxylate and ammonium). A distinctive feature
of these structures is the regularity imposed by hydrogen
bonds between the C0O and NH groups of different peptide
bonds; the tables provided in this manuscript show the
hydrogen-bond lengths extracted from these starting α-
helical canonical structures.

Geometry optimizations were performed either in vacu-
um or with the CPCM continuum solvent model as imple-
mented in the Gaussian09 software package [30]. Molecular
mechanics calculations utilized the force fields Amber and
UFF, as implemented in Gaussian09 [30] and Hyperchem
[31]. The semiempirical PM6 method was employed as
implemented in the Gaussian09 [30] and MOPAC [32]
software packages, and the PM3 implementation from
Hyperchem [31] was also used.

HF/3-21G* and density functional theory (M062X/6-
31G**, M062/6-311+G**, BP86/6-31G**) computations
were performed in Gaussian09 [31]. The CPCM solvation
model was employed for HF and DFT calculations [30, 33].
Standard convergence criteria as defined in the respective
software packages were employed.

Calculations performed with the Gaussian09 package
utilized the default settings for the SCF cycles and geometry
optimization, namely the fine grid (75,302) to numerically
evaluate the integrals, a self-consistent field convergence of
10−8 hartrees, a maximum force of 0.000450 hartrees/bohr,
an RMS force of 0.000300 hartrees/bohr, a maximum dis-
placement of 0.001800 bohrs, and an RMS displacement of
0.001200 bohrs. The default SCF procedure uses a combi-
nation of EDIIS and CDIIS [34], with no damping or Fermi
broadening. The nature of each stationary point after opti-
mization was checked by calculating the harmonic vibra-
tional frequencies to ensure that the stationary points found
were genuine minima.

We recently reported a technical evaluation of the various
optimization algorithms as employed with the PM6 method
in the MOPAC2009 software package, using an α-helix of
decaglycine as a test case [35]. Based on this extensive
study, we chose to use the PM6-D2 Hamiltonian [36] and
cpcm continuous solvent model (using a conductor-like
screening model [37], a dielectric constant of water of
78.39, and a solvent radius of 1.3 Å) with the L-BFGS
optimization method. The default optimizer in MOPAC2009

is Baker’s eigenvector-following method [38]. The Davidon–
Fletcher–Powel algorithm [39, 40] was the first quasi-Newton
generalized method implemented in MOPAC; this was subse-
quently improved upon by the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) procedure [41–44]. An advanced variant of
the BFGS optimizer is the “limited-memory BFGS” function
minimizer, which calculates the inverse Hessian as needed
[45–47], and is thus suitable for optimizing larger systems.

Note that, although we examined the geometries of
α-helices, this does not imply that we expect them to be
the only—or even the most stable—forms of secondary
structure available for the peptides examined in the
present study. It is, nevertheless, a basic biochemical
principle that all simple peptides are able to form the
two main types of secondary structure (assuming that
less usual amino acids such as proline are not present),
including the α helix. Geometry optimizations (M062x/
6-31G**) reveal for instance that the 310 and α-helix
geometries are within∼5 kcal mol−1 of each other energetical-
ly, and are close in energy to other forms as well. These issues
relating to the relative stabilities of secondary structural ele-
ments are, however, a topic for ongoing investigations, and are
not discussed further here.

Results and discussion

Gly10

Geometry optimization results obtained for the neutral Gly10
model are shown in Table 1 and Fig. 1. Among the molec-
ular mechanics methods, UFF leads to a strongly distorted
structure (cf. Fig. 1), where the length of the helix drops
from 13.9 Å in the initial canonical structure to 10.8 Å;
further data on this result are therefore not shown in Table 1.
The Amber force field (Hyperchem implementation) pre-
serves the helix length to within 1 Å of the starting structure,
but yields average hydrogen bonds that are ∼0.25 Å longer
than in the starting canonical model. Among the semiem-
pirical methods, by far the best performance is provided by
the MOPAC implementation of PM6: the values of hydro-
gen bonds remain very close to each other (1.9–2.1 Å)
throughout the model, in contrast to the Gaussian PM6
and PM3 methods, which yield values as high as 4.5. The
MOPAC PM6 also appears to perform well in terms of the
total length of the helix: it is within 0.6 Å of the canonical
geometry.

Helix lengths predicted by ab initio and DFT methods fall
within ±0.1 Å of the canonical geometry, with slightly better
values obtained from solvated models. The lengths of the
hydrogen bonds appear to be optimally modeled by HF in
the solvated model: an average of 1.88 Å was obtained,
compared to values of >2 Å obtained with the other methods

194 J Mol Model (2013) 19:193–203



of its class. The M06 functional predicts two unusually long
hydrogen bonds at the two termini of the helix in the unsol-
vated model but not in the solvated one. On the other hand,
Table S1 of the “Electronic supplementary material” (ESM)
shows that another density functional, BP86, completely fails
to reproduce an α-helical structure in vacuum, even though it
performs reasonably well when used together with a solvation
model (average hydrogen bond length −1.95 Å).

One general observation is that all methods predict asym-
metry in the helix, with the hydrogen bonds at the extrem-
ities of the chain displaying larger values than those in the

middle of the chain. Furthermore, the lengths of the two
hydrogen bonds at the two ends are not identical according
to all of the methods employed here.

For the zwitterionic α-Gly10 structure, Fig. 2 and Table 2
illustrate the starting point and selected optimized geome-
tries. The Amber force field leads to loss of the α-helical
character of the structure, with hydrogen-bonding distances
increasing to as much as 7.8 Å. The UFF force field was
found to give similar results to Amber (data not shown).

The zwitterionic Gly10 HF structure obtained in vacuum
is entirely nonhelical (cf. Fig. 2). Far better results are

Fig. 1 Graphical representation
of the optimized neutral Gly10
geometries provided by various
methods employed in the
present study

Table 1 CO···NH hydrogen-bond lengths and helix lengths for the neutral Gly10 models

Neutral Gly10
a Initial Amber Hyperchem PM3 Hyperchem PM6 Gaussian PM6 MOPAC HF/

3-21G*
M062X/
6-31G**

HF/
3-21G*

M062X/
6-31G**

Vacuum Vacuum Vacuum Vacuum Water Vacuum Vacuum Water Water

1–5 1.74 2.13 1.85 2.18 1.99 2.21 2.51 1.96 2.12

2–6 1.74 1.97 1.89 2.04 1.92 1.93 2.13 1.81 1.97

3–7 1.74 2.04 1.89 3.45 1.94 2.03 2.15 1.9 2.02

4–8 1.74 2 1.86 2.12 1.93 2.05 2.23 1.86 1.99

5–9 1.74 2.05 3.14 2.09 1.99 1.92 2.68 1.87 2.11

6–10 1.74 2.1 4.56 4.47 2.12 2.12 3.08 1.86 2.26

(CO···HN)avg 1.74 2.05 2.53 2.72 1.98 2.04 2.46 1.88 2.08

Helix length 13.91 14.53 14.52 12.08 14.49 12.94 14.9 14.03 14.61

a Amino acids whose NH/CO groups engage in hydrogen bonds are indicated in this column; numbering starts from the N-terminus of the peptide
b Length of the helix, measured between the α-carbon atoms of the first and last amino acids, respectively
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obtained when solvation is included with the HF and DFT
methods. The M06 results also illustrate the effect of using a
larger basis set on the results: hydrogen bonds contract by
0.1 Å upon changing from 6-31G** to 6-311+G**—a
change that is expected, since the larger basis set leads to a
more accurate description of weak interactions such as hy-
drogen bonds. In contrast to the M06 data shown in Table 2,
DFT data obtained for the Gly10 zwitterion with the BP86
functional show that even solvation cannot produce an intact

helical structure during geometry optimization, as the two
terminal hydrogen bonds are elongated to more than 4 Å
(Table S1 of the ESM).

Among the methods employed here, HF/3-21G* with
water as solvent appeared to offer the best performance for
the Gly10 zwitterion, as it maintained an α-helical structure
that had regular hydrogen bonds with lengths close to those
expected for the canonical α-helix. However, MOPAC PM6
gave a similar level of performance (the average of

Fig. 2 Graphical representation
of optimized zwitterionic Gly10
geometries provided by various
methods employed in the
present study

Table 2 CO···NH hydrogen-bond lengths and helix lengths for the zwitterionic Gly10 models. Labels are as in Table 1. The HF/3-21G**/vacuum
geometry is not listed, as the helix was completely destroyed upon geometry optimization

Zwitterionic Gly10
a Initial Amber Gaussian PM6 MOPAC HF/3-21G* M062X/6-31G** M062X/6-311+G**

Vacuum Vacuum Water Water Water Water
NH···OC NH···OC NH···OC NH···OC NH···OC NH···OC

1–5 1.74 3.75 2.06 2.04 2.25 2.24

2–6 1.74 4.6 1.94 1.84 2.04 1.99

3–7 1.74 7.75 1.95 1.89 2.02 1.97

4–8 1.74 2.01 2 1.88 2.01 1.98

5–9 1.74 2.56 1.98 1.89 2.28 2.09

6–10 1.74 6.41 2.03 1.96 2.65 2.41

(CO···HN)avg 1.74 4.91 1.99 1.92 2.21 2.11

Helix lengthb 13.91 12.52 14.44 14.09 14.85 14.78
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hydrogen-bond length was only 0.07 Å longer than that for
HF/3-21G* with water as solvent).

α-Gly50

Figure S2 and Table S2 of the ESM illustrate results
obtained for a neutral Gly50 α-helix, in order to gauge the
extent to which the results obtained for the decaglycine
model can be used to derive trends observable in larger
models. The HF/3-21G* approach again yields results close
to those expected for the canonical α-helix, with the
MOPAC PM6 method performing slightly worse than for
the decaglycine model (average hydrogen-bond length of
2.22 Å in Gly50 vs. 1.98 Å in Gly10). The Gaussian09
implementation of the PM6 method reshapes the helix so
that a hydrogen bond is formed in the optimized geometry
between amino acids 1 and 6, as opposed to the hydrogen
bond between amino acids 1 and 5 in the starting geometry
(with this trend conserved throughout the helix: 2–7, 3–8,
4–9 instead of 2–6, 3–7, 4–8). Results for the UFF method
are also listed in Table 1; in agreement with what was seen
in the decaglycine model, hydrogen bonds are predicted to
be too long (2.7 Å, almost 1 Å longer than the expected
value), and the helix length is also distinctly different from

the canonical value as well as the value computed with HF/
3-21G*. Just as was seen for the decaglycine models, all of
the methods indicated that the hydrogen bonds were asym-
metric throughout the helix.

Model data for the zwitterionic Gly50 are shown in Table
S3 and Fig. S3 of the ESM. The MOPAC PM6 method
again performs remarkably well both in terms of hydrogen
bond length and overall helix length. The Amber and UFF
force fields each predict unreasonably long hydrogen bonds
at the ends of the helix (2.6–6 Å); also, the helix lengths
predicted by these force fields differ by more than 10 Å
from the canonical value. The Gaussian09 implementation
of the semiempirical method PM6 rearranges the α-helical
structure in the same way as it did for the neutral model, so
that 1–6 hydrogen bonds are preferentially formed over 1–5;
furthermore, the N- and C- termini of the chain are elimi-
nated from the molecule in the form of NH3 and CO2 during
geometry optimization.

α-Ile10

Isoleucine-containing α-helices were also examined to check
the extent to which side chains larger than that of glycine affect
the performance of each computational method in describing

Table 3 CO···NH hydrogen bond lengths and helix lengths for the neutral Ile10 structure. Labels are as in Table 1

Neutral ILE10 Initial Amber Hyper PM3 Hyper PM6 Gaussian PM6 MOPAC HF/3-21G* M062X/6-31G** M062X/6-31G** HF/3-21G*
Vacuum Vacuum Vacuum Vacuum Water Vacuum Vacuum Water Water
NH···OC NH···OC NH···OC NH···OC NH···OC NH···OC NH···OC NH···OC NH···OC

1–5 1.72 2.13 2.43 2.16 1.94 4.09 2.05 1.97 2.28

2–6 1.72 2.01 2.53 2.11 2.01 2.06 2.16 2.07 1.99

3–7 1.72 2.26 2.55 2.21 2.05 2.57 2.36 2.2 2.28

4–8 1.72 2.18 2.56 2.14 2.03 4.84 2.26 2.14 2.32

5–9 1.72 2.13 2.8 2.84 2.06 3.52 3.09 2.18 2.11

6–10 1.72 2.05 3 3.27 2.04 3.49 3.32 2.14 2.2

(CO···HN)avg 1.72 2.12 2.65 2.45 2.02 3.42 2.54 2.11 2.2

Helix length 13.86 14.43 14.65 15.05 14.26 15.89 14.96 14.42 14.77

Table 4 CO···NH hydrogen bond lengths and helix lengths for the Ile10 zwitterion. Labels are as in Table 1

Zwitterionic Ile10 Initial Spartan Amber Hyper HF/3-21G* Gaussian PM6 MOPAC HF/3-21G* Gaussian M062X/6-31G** Gaussian
Vacuum Vacuum Water Water Water

NH···OC NH···OC NH···OC NH···OC NH···OC NH···OC

1–5 1.72 2.06 1.86 2.01 3.76 2.04

2–6 1.72 2.05 4.43 2.01 1.99 2.09

3–7 1.72 3.58 5.88 2.04 2.34 2.19

4–8 1.72 3.9 4.38 2.09 3.96 2.16

5–9 1.72 3.13 2 2.09 2.09 2.34

6–10 1.72 3.24 3.43 2.03 2.46 2.37

(CO···HN)avg 1.72 - - 2.04 2.76 2.19

Helix length 13.86 14.34 - 14.4 15.62 14.56
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this element of secondary structure. Results for Ile10 (Tables 3
and 4 and Figs. 3 and 4) and Ile50 (Table S4) were generally
similar to those obtained for the glycine models.

Table 3 illustrates that for the neutral Ile10 model, the
Amber force field performs as well as it did for Gly10.
The relative performance levels of the semiempirical

Fig. 3 Graphical representation
of the optimized neutral Ile10
geometries obtained by three
different methods

Fig. 4 Graphical representation
of the optimized zwitterionic
Ile10 geometries obtained by
various methods
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methods are also the same: the only reasonable result
(monotonous hydrogen-bond lengths that are well below
2.5 Å) is provided by MOPAC PM6. On the other
hand, the HF method, which described Gly10 reason-
ably well, fails here, yielding hydrogen-bond lengths as
long as 4.8 Å. The M06 functional appears to be more
reliable in this respect, as the average hydrogen-bond
length is ∼2.5 Å in both Gly10 and Ile10.

Table 4 illustrates geometry optimization for the Ile10
zwitterion. The Amber force field fails to provide reasonable
hydrogen-bonding geometries, while the MOPAC PM6
once again provides reasonable results. Unexpectedly, the
HF method fails not only in vacuum but also in solvent: in
the latter case, hydrogen bonds as long as 4 Å are predicted,
as opposed to the reasonable geometry predicted for Gly10
(see Table 2). By contrast, the M06 functional with solva-
tion provides a distinctly more reasonable geometry and is,
in this respect, the one method—alongside Mopac PM6—
that provides reasonable descriptions for all of the models
examined thus far.

α-Ile-50

Table S4 and Figs. S4 and S5 of the ESM show data
for neutral and zwitterionic α-Ile50 structures. With the
Amber force field, the two ends of the helix are dis-
torted (with hydrogen-bond lengths as long as 5.4 Å),
but the rest of the chain retains reasonable hydrogen-
bond lengths for an α-helix. For the neutral structure,
the UFF force field yields hydrogen bonds of >3 Å
(data not shown).

Calmodulin model

Calmodulin shows α-helical regions, and thus represents a
reasonable test case to use to check the extent to which the
results obtained for models such as Gly10/50 and Ile10/50
can be extrapolated to experimentally known peptide/protein
structures. The central part of calmodulin features a long α-
helix (28 residues, overall charge −2). This portion of the
protein was extracted from the X-ray diffraction structure,

Table 5 Alpha helix CO···NH
bond lengths for the calmodulin
fragment

Long loop of 3CLN PDB Amber Gaussian PM6 MOPAC HF/3-21G* Gaussian
Vacuum Water Vacuum

NH···OC NH···OC NH···OC NH···OC

Phe65–Leu69 1.79 1.8 1.96 2.29

Pro66–Thr70 2.19 2.01 2.02 2.01

Glu67–Met71 2.06 1.82 1.95 2.34

Phe68–Met72 1.79 1.92 1.79 1.89

Leu69–Ala73 2.04 1.99 2 1.92

Thr70–Arg74 2.74 1.72 1.99 2.23

Met71–Lys75 2.21 2.72 1.87 1.92

Met72–Met76 2.32 5.44 1.98 2.09

Ala73–Lys77 2.6 6.5 1.96 1.98

Arg74–Asp78 2.67 3.26 1.88 1.84

Lys75–Thr79 2.94 4.02 1.82 3.37

Met76–Asp80 2.89 1.86 1.92 1.77

Lys77–Ser81 2.67 2.02 1.99 1.94

Asp78–Glu82 2.31 6.29 1.92 4.1

Thr79–Glu83 2.84 3.26 1.88 2.64

Asp80–Glu84 3 2.39 2.01 1.83

Ser81–Ile85 2 2 2.03 1.96

Glu82–Arg86 2.04 2.71 1.93 1.96

Glu83–Glu87 2.45 1.98 1.86 1.73

Glu84–Ala88 2.12 3.41 1.93 1.93

Ile85–Phe89 2.31 3.67 1.92 2.58

Arg86–Arg90 2.71 3.11 1.88 1.66

Glu87–Val91 2.27 - 2.19 1.85

Ala88–Phe92 1.89 - 2.5 3.87

(CO···HN)avg 2.09 2.18 1.97 1.95

RMSD - 4.98 1.23 3.74
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pdb code 3CLN [48], and used in computations as detailed in
Table 5. The N- and C-termini were modeled as ammo-
nium and carboxylate groups, respectively, and an over-
all charge of −2 was assigned (as determined by the
number of Asp/Glu and Lys/Arg amino acids, whose
side chains were modeled as charged −1 and +1, re-
spectively). Three methods with reasonable computa-
tional costs were employed in this case. As shown in
Table 5 and Fig. 5, the Amber method does not model
the helical structure properly, predicting a well-defined
bending point midway through the structure (cf. Fig. 5)
and several unacceptably long (>3 Å) hydrogen-bonding
distances (amino acids 74–85). A bent helix is also
predicted by the HF approach, which unfortunately also
eliminates the C-terminal carboxylate as CO2 upon ge-
ometry optimization. The MOPAC PM6 method is the
only method that completely preserves the α-helical structure;
however, in this case, the tendency to give a canonical struc-
ture is exaggerated: even though there are hydrogen-bond

distances as long as 3 Å in the experimental structure, the
PM6 method predicts that all of the hydrogen bonds in the
structure are in the ∼1.9–2.0 Å range.

1ALG

The PDB structure with a code of 1ALG is a protein
composed of 24 residues with a global α-helix structure
(although some of the terminal amino acids are not part
of the helix) [49]. Computations were performed on the
complete structure of this protein without any trunca-
tion; data are shown in Table 6 and Fig. 6. Interestingly,
methods that gave less impressive results for the
smaller/simpler models discussed above (e.g., the Gauss-
ian implementation of PM6, or HF/3-21G* in vacuum)
are found to reproduce the regularity of the helical
structure of the complete, experimentally known, protein
1ALG reasonably well. In fact, even where the experimental
structure shows deviations from an α-helix, such as for the

Fig. 5 Graphical representation
of the optimized 3CLN long-
loop geometries obtained by
various methods
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first two hydrogen bonds (which are longer) and the last
hydrogen bond (which is distinctly shorter), the computational
methods fail to predict these deviations.

Summary

Several computational methods for performing the geometric
optimization of simple α-helical protein models were tested.

Methods that performed well with larger protein structures
appeared to be unable to describe simpler α-helices properly.
One of the implementations of the semiempirical method
PM6, alongside density functional calculations including sol-
vation (with the M06 functional performing better than the
others), appear to provide reasonable results for all of test
cases studied here, although the hydrogen-bonding distances
obtained using these methods were typically within 0.2–0.6 Å
of those expected for the canonical structure.

Table 6 Alpha helix CO···NH hydrogen-bond lengths for the 1ALG structure

1ALG PDB Amber Gaussian PM6 Gaussian PM6 MOPAC HF/3-21G* HF/321G*
Vacuum Vacuum Water Vacuum Water

Charge −1 NH···OC NH···OC NH···OC NH···OC NH···OC NH···OC

1 Met8–Gly4 2.58 - 2.28 1.84 1.88 1.93

2 Leu9–Cys5 2.29 2.95 2 1.97 2.13 2.13

3 Glu10–Asp6 1.94 1.82 2 1.95 2.02 1.83

4 Gly11–Glu7 2.14 2 2.27 2.21 1.94 1.93

5 Phe12–Met8 2.33 1.8 2.02 1.82 1.85 1.9

6 Ala13–Leu9 2.02 1.88 2.25 1.88 1.9 1.84

7 Val14–Gln10 1.94 1.84 2.03 2.02 1.91 1.81

8 Ala15–Gly11 2.14 1.93 2.01 2 1.94 2.17

9 Val16–Phe12 1.83 1.85 2 2.01 1.89 1.97

10 Lys17–Ala13 2.25 2.05 2.21 1.93 2.34 1.95

11 Met18–Val14 1.91 3.78 1.85 1.8 1.85 1.97

12 Gly19–Ala15 1.74 2.04 1.89 2.14 1.74 1.91

(CO···HN)avg 2.09 2.17 2.07 1.96 1.95 1.95

RMSD - 2.74 2.38 1.18 1.59 1.30

Fig. 6 Graphical representation
of the optimized 1ALG
geometries obtained by various
methods
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